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NOMENCLATURE 

4 depth of the fluid layer; 
9, acceleration due to gravity ; 
L width of the fluid layer; 
L length of the fluid layer; 
N, number of convective rolls ; 
Ra, Rayleigh number, (g c+ AT d3/w): 
RP, critical Rayleigh number; 
v,, v,, v,, Cartesian components of velocity; 
x, y. z, Cartesian coordinates. 

Greek symbols 

wavenumber in the x-direction ; 
coefficient of volume expansion ; 
width-to-height ratio of the apparatus, I/d; 
length-to-width ratio of the apparatus L/I; 
temperature difference between the two horizon- 
tal plates; 
kinematic viscosity of the fluid; 
thermal diffusivity of the fluid. 

1. INTRODUCTION 

WHEN a fluid layer is heated uniformly from below, the state 
of rest becomes unstable when the critical Rayleigh number 
Ra” (the non-dimensional temperature gradient) exceeds a 
certain value. At the onset of convection, the shape of the 
convective motion depends on the nature and the geometry of 
the boundaries. 

In the case of a rectangular channel, various theoretical 
works have been achieved; they all show that convection 
appears under the form of rolls aligned with their axis 
perpendicular to the axis of the channel [l-5]. 

The results concerning the onset of free convection in an 
infinite rectangular duct with four rigid boundaries, two 
perfectly conducting horizontal plates and two insulating 
lateral walls have been given elsewhere [S]. There the stability 
of the following cases was studied : 

(i) infinite longitudinal rolls [with their axis parallel to the 
axis of the channel (V, = 0 in Fig. l)]. 

(ii) finite transverse rolls (V, = 0), 
(iii) 3-dim. rolls (V,, V,, V, # 0). 

Three-dimensional perturbations lead to the lowest critical 
Rayleigh numbers. At the onset of convection, the existence of 
a y-component of the velocity leads to a z-symmetrical y- 
curvature of the trajectories of fluid particles. The dependence 
of the critical wavenumber (related to the size of convective 

rolls at the critical point), on the width-to-height ratio is very 
characteristic of the 3-dim. structure: in the case of longitu- 
dinal rolls as’ is obviously equal to zero; for finite transverse 
rolls, it decreases monotonically when the width-to-height 
ratio increases (curve a, Fig. 2) and for three-dimensional rolls 
one obtains the particular curve bon Fig. 2. This characteris- 
tic shape does not depend on the nature of the horizontal 
walls since it has been sketched as well as for ‘free-free’ 
boundary conditions [3], and for ‘rigid-rigid’ ones [5]. 

Concerning the experimental point of view, Oertel and 
Biihler [6] quoted,via a differential interferometry technique, 
the presence of a three-dimensional convective motion in a 
duct with a length-to-width ratio (y) of 2.5 and Rayleigh 
numbers not less than 1.5 times the critical Rayleigh number. 
In this work we intend to measure the wavelength of 
convective cells as a function of the width-to-height ratio in a 
very long apparatus (y 2 17.5) and as close as possible to the 
threshold of Rayleigh-Bthrard convection. For that, we use 
the same experimental apparatus and the same shadowgraph 
method described earlier [7] in a paper about the influence of 
a superimposed basic flow on the shape of thermoconvective 
rolls in a long duct. 

2. EXPERIMENTAL DETAILS 

The apparatus that we used in a previous work [7] will be 
described shortly again for convenience (Fig. 3). A rect- 
angular Plexiglas frame is enclosed between two 3 cm thick 
copper plates kept at constant temperature by flows of 
thermoregulated water. The flow rate is about 50cm3s-‘. 
Available space for the fluid is: length L = 93.5 cm between 
the two porous media, height d = 1 cm and the width can be 
varied from 0 to 5.25 cm. As usual in this kind of experiment, 
we used a silicone oil, a very good Boussinesq fluid. In 
particular, we employed the Dow Coming 200 fluid with a 
viscositv eaual to 0.50 + 0.01 cm2 s- I. The Prandtl number is < . 
about 500. Convection% visualized by a very simple shadow 
graph method, that is the so-called thermal lens effect. The 
image of the convective rolls on a screen located at the focal 
length (whose position depends on the velocity of the 
convective motion) presents thus a succession of alternately 
dark and pale areas, the number of which representing the 
number of convective rolls in the apparatus. A typical 
photograph of the image of the convective rolls was shown in 
our previous paper [7]. 

3. RESULTS 

First of all, we tried to determine the critical Rayleigh 
number (Ra”) and the corresponding critical wavenumber 
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FIG. 1. Coordinate system. 

temperature difference was found to be 0.925 + 0.05”C. 
Knowing the physical properties of the fluid at 25°C (ar = 
1.04 5 0.01 lo-” K-l, K = 1.10 f 0.03 10-3cm2s-‘, v = 
0.50 f 0.01 cm’s_‘) allows the calculation of the cor- 
responding Rayleigb number (d = 1.00 f 0.01 cm) 

Ra” = 
g q ATC’d3 

KV 

981 x 1.04 x 0.925 x l3 
= = 

1.10 x 0.50 
1716 

to compare with theoretical value of 1711.49 [5]. This rather 
good agreement is fortuitous, the experimental error on RaCr 
being * 200. 

We also counted the presence of 92 convective rolls for this 
aspect ratio at the onset of convection (this experiment was 
repeated five times within several weeks each time for 92 rolls). 
The corresponding wavenumber is thus 
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FIG. 2. Critical wavenumber vs the width-to-height ratio of the apparatus. (a) Theory: finite rolls 
assumption. (b) Theory: 3dim. perturbations. Experimental values with their error are also represented. 

(ccc’) for a particular width-to-height ratio, namely B = 5.25. 
Theoretical values are: Ra” = 1711.49 for j3 = 5.25 [5] 
instead of RaC’ = 1707.762 for /I + 00 [8]. 

The procedure used was as follows: the lower plate was 
thermoregulated at 25 f 0.05 “C and the upper boundary at 
24.50 f 0.05”C. The temperature of the upper plate was 
decreased by steps of about O.OS”C. Roll images appear on the 
screen after a few hours. (Preliminary crude experiments were 
performed to determine when threshold of convection oc- 
curs). Convection always starts at the boundaries (near the 
porous media), about twenty minutes after the critical 
gradient has been imposed. The convective motion was then 
allowed to fill the fluid layer completely (typically a few 
hours). At this point the number of convective rolls and the 
temperature difference between the two baths of thermoregu- 
lated water was recorded. For B = 5.25, this critical 

cP’=(rr/L)Nd=K x92x lcm=3.09 
93.5 cm 

the theoretical value being aer = 3.043 for 3-dim. 
perturbations. 

Experimental error on acr may be a result of the following 
causes : 

(i) Non-parallelism of the boundaries and error on the 
measurement of d (of less than 1%). 

(ii) Relative error of l/N due to the fact that the channel is 
not infinitely long. (Obviously the number of rolls in the 
experiment must be an integer). 

(iii) The ‘critical point’ was judged to have been reached 
when an image of a well structured ‘macroscopic’ rolls system 
was seen on the screen within a few hours. Of course this 
‘critical temperature gradient’ exceeds that of the linear 

water 

copper 

water 

FIG. 3. Experimental set-up. (a) Plexiglas frame. (b) Porous media. 
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Table 1. 
___ 

Number of rolls Wavenumber 
Theory* Theory 

a = l/d Experiment (a) (b) Experiment (a) (b) 

1.07 93 94 95 3.125 3.162 3.185 
1.94 90 or 91 90 94 3.041 3.027 3.160 
2.88 88 88 94 2.957 2.966 3.145 
3.93 90 89 93 3.024 3.001 3.136 
4.59 90 90 93 3.024 3.024 3.132 
5.25 92 91 93 3.091 3.043 3.129 

*The number of rolls calculated has been rounded off. 
(a) Three-dimensional perturbations. 
(b) Finite rolls approximation. 

theory (where the most unstable infinitesimal disturbances 
neither grow nor decay). Probably what we call ‘critical point’ 
is characterised by a temperature gradient AT = 1.05 AT”. 
This may induce a systematic error. In fact, the wavenumber 
was found to decrease when the temperature gradient 
increases. For this aspect ratio, 2 rolls were lost for AT 2 1.3 
AT”‘, 3 rolls for AT-- 1.8 AT” and 18 rolls for AT = 9.2 
AT”). However. it is likelv that. at AT Y 1.05 AT”. the 
number of convective rolls-is the same at the ‘true’ critical 
temperature gradient. 

Taking into account the two first sources oferrors the error 
on the critical wavenumber is less than 2?,,. 

component in the Rayleigh-Benard convective motion even 
near the threshold of convection. 

We have also proved that, contrary to the recent results of 
Frick and Clever [4], the difference between the initial values 
of the finite rolls assumption and the critical values of the 3- 
dim. theory is not negligible and can be experimentally 
measured. 

Acknowledgements The first author (JML) is very grateful 
to the Belgian Institut pour la Recherche Scientifique dans 
I’Industrie et I’Agriculture (I.R.S.I.A.) and to the Belgian 
National Fund for Scientific Research for financial support. 

so 

c(‘~ (p = 5.25) = 3.09 + 0.05 

We undertook the same determination of xc* for six width-to- 1. 

height ratios, Table 1 gives the observed number of rolls and 
the resulting wavenumber compared with the theoretical 

2, 

values, based on our paper [S]. In Fig. 2, curve (a) shows the 
critical wavenumbers for transverse finite rolls (I’, E 0) and 
curve (b) is relative to the onset of ‘3dim. convection’. These 

3. 

experiments have been performed two or three times for each 
aspect ratio and always conducted to the same number of 
rolls at the critical point, except for the case /I = 1.94, where 

4 

two successive runs 90 and 91 rolls were observed, giving two 
experimental values for this aspect ratio in Table 1. 

5 

6. 
4. CONCLUSION 

We conclude from Fig. 2 that, when the width-to-height 
ratio of a long fluid layer increases, the corresponding critical 7. 
wavenumber begins to decrease, reaches a minimum for /I ? 3 
and then increases. It also appears that these experimental 
data fit closely the curve corresponding to 3-dim. per- 
turbations and disagree with the finite rolls approximation, 8. 
providing a supplementary, but indirect proof of the 3-dim. 
character of the flow : there should exist a non-zero y-velocity 
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