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NOMENCLATURE
d, depth of the fluid layer;
g, acceleration due to gravity;
I, width of the fluid layer;
L, length of the fluid layer;
N, number of convective rolls;
Ra, Rayleigh number, (g «; AT d3/kv);
Ra*, critical Rayleigh number ;
V,V,V, cartesian components of velocity;
x, y, z, cartesian coordinates.

Greek symbols

a, wavenumber in the x-direction;

o, coefficient of volume expansion;

B, width-to-height ratio of the apparatus, //d;

7, length-to-width ratio of the apparatus L//;

AT, temperature difference between the two horizon-
tal plates;

v, kinematic viscosity of the fluid;

K, thermal diffusivity of the fluid.

1. INTRODUCTION

WHEN a fluid layer is heated uniformly from below, the state
of rest becomes unstable when the critical Rayleigh number
Ra** (the non-dimensional temperature gradient) exceeds a
certain value. At the onset of convection, the shape of the
convective motion depends on the nature and the geometry of
the boundaries.

In the case of a rectangular channel, various theoretical
works have been achieved; they all show that convection
appears under the form of rolls aligned with their axis
perpendicular to the axis of the channel [1-5].

The results concerning the onset of free convection in an
infinite rectangular duct with four rigid boundaries, two
perfectly conducting horizontal plates and two insulating
lateral walls have been given elsewhere [ 5]. There the stability
of the following cases was studied:

(i) infinite longitudinal rolls [with their axis parallel to the
axis of the channel (V, = 0in Fig. 1)].

(i) finite transverse rolls (V, = 0),

(iii) 3-dim. rolls (V,, V. V, # 0).

Three-dimensional perturbations lead to the lowest critical
Rayleigh numbers. At the onset of convection, the existence of
a y-component of the velocity leads to a z-symmetrical y-
curvature of the trajectories of fluid particles. The dependence
of the critical wavenumber (related to the size of convective

rolls at the critical point), on the width-to-height ratio is very
characteristic of the 3-dim. structure: in the case of longitu-
dinal rolls a*" is obviously equal to zero; for finite transverse
rolls, it decreases monotonically when the width-to-height
ratio increases (curve a, Fig. 2) and for three-dimensional rolls
one obtains the particular curve b on Fig. 2. This characteris-
tic shape does not depend on the nature of the horizontal
walls since it has been sketched as well as for ‘free—free’
boundary conditions [3], and for ‘rigid-rigid’ ones [5]}.

Concerning the experimental point of view, Oertel and
Biihler [6] quoted, via a differential interferometry technique,
the presence of a three-dimensional convective motion in a
duct with a length-to-width ratio (y) of 2.5 and Rayleigh
numbers not less than 1.5 times the critical Rayleigh number.
In this work we intend to measure the wavelength of
convective cells as a function of the width-to-height ratio in a
very long apparatus (y > 17.5) and as close as possible to the
threshold of Rayleigh—Bénard convection. For that, we use
the same experimental apparatus and the same shadowgraph
method described earlier [ 7] in a paper about the influence of
a superimposed basic flow on the shape of thermoconvective
rolls in a long duct.

2. EXPERIMENTAL DETAILS

The apparatus that we used in a previous work [7] will be
described shortly again for convenience (Fig. 3). A rect-
angular Plexiglas frame is enclosed between two 3cm thick
copper plates kept at constant temperature by flows of
thermoregulated water. The flow rate is about 50cm3s~".
Available space for the fluid is: length L = 93.5cm between
the two porous media, height = 1 cm and the width can be
varied from 0 to 5.25cm. As usual in this kind of experiment,
we used a silicone oil, a very good Boussinesq fluid. In
particular, we employed the Dow Corning 200 fluid with a
viscosity equal to 0.50 + 0.01cm?s™ . The Prandtl number is
about 500. Convection is visualized by a very simple shadow
graph method, that is the so-called thermal lens effect. The
image of the convective rolls on a screen located at the focal
length (whose position depends on the velocity of the
convective motion) presents thus a succession of alternately
dark and pale areas, the number of which representing the
number of convective rolls in the apparatus. A typical
photograph of the image of the convective rolls was shown in
our previous paper [7].

3. RESULTS

First of all, we tried to determine the critical Rayleigh
number (Ra®") and the corresponding critical wavenumber
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FiG. 1. Coordinate system.
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temperature difference was found to be 0925 + 0.05°C.
Knowing the physical properties of the fluid at 25°C (a,
1.04 £ 001107 °K !k = 1.10 + 00310 3cm?s™ 1, v =
0.50 + 0.01cm?s™!') allows the calculation of the cor-
responding Rayleigh number (4 = 1.00 + 0.01cm)

goarATd?

KV

Ra*r

981 x 1.04 x 0.925 x 13
= 1.10 x 0.50

= 1716

to compare with theoretical value of 1711.49 [5]. This rather
good agreement is fortuitous, the experimental error on Ra®
being + 200.

We also counted the presence of 92 convective rolls for this
aspect ratio at the onset of convection (this experiment was
repeated five times within several weeks each time for 92 rolls).
The corresponding wavenumber is thus

Wavenumber

FiG. 2. Critical wavenumber vs the width-to-height ratio of the apparatus. (a) Theory: finite rolls
assumption. (b) Theory: 3-dim. perturbations. Experimental values with their error are also represented.

(o°") for a particular width-to-height ratio, namely § = 5.25.
Theoretical values are: Ra® = 1711.49 for § = 5.25 [5]
instead of Ra® = 1707.762 for p — oo [8).

The procedure used was as follows: the lower plate was
thermoregulated at 25 + 0.05°C and the upper boundary at
24.50 + 0.05°C. The temperature of the upper plate was
decreased by steps of about 0.05°C. Roll images appear on the
screen after a few hours. (Preliminary crude experiments were
performed to determine when threshold of convection oc-
curs). Convection always starts at the boundaries (near the
porous media), about twenty minutes after the critical
gradient has been imposed. The convective motion was then
allowed to fill the fluid layer completely (typically a few
hours). At this point the number of convective rolls and the
temperature difference between the two baths of thermoregu-

x 92 x 1cm = 3.09

n
o = (R/L)Nd =
o' = /L) 935cm

the theoretical value being «°f 3.043 for 3-dim.
perturbations.

Experimental error on «°° may be a result of the following
causes:

(i) Non-parallelism of the boundaries and error on the
measurement of d (of less than 19)).

(ii) Relative error of 1/N due to the fact that the channel is
not infinitely long. (Obviously the number of rolls in the
experiment must be an integer).

(iii) The ‘critical point’ was judged to have been reached
when an image of a well structured ‘macroscopic’ rolls system
was seen on the screen within a few hours. Of course this
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FIG. 3. Experimental set-up. (a) Plexiglas frame. (b) Porous media.
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Table 1.
Number of rolls Wavenumber
Theory* Theory
B=l/d Experiment (a) (b) Experiment (a) (b)

1.07 93 94 95 3.125 3.162 3.185
1.94 90 or 91 90 94 3.041 3.027 3.160
2.88 88 88 94 2957 2966 3.145
393 90 89 93 3.024 3.001 3.136
4.59 90 90 93 3.024 3024 3132
5.25 92 91 93 3.091

3.043 3.129

*The number of rolls calculated has been rounded off.
(a) Three-dimensional perturbations.

(b) Finite rolls approximation.

theory (where the most unstable infinitesimal disturbances
neither grow nor decay). Probably what we call ‘critical point’
is characterised by a temperature gradient AT = 1.05 AT".
This may induce a systematic error. In fact, the wavenumber
was found to decrease when the temperature gradient
increases. For this aspect ratio, 2 rolls were lost for AT ~ 1.3
AT®, 3 rolls for AT ~ 1.8 AT and 18 rolls for AT ~ 9.2
AT*"). However, it is likely that, at AT ~ 105 AT, the
number of convective rolls is the same at the ‘true’ critical
temperature gradient.

Taking into account the two first sources of errors the error
on the critical wavenumber is less than 29,

So

@™ (B = 5.25) = 3.09 + 0.05.

We undertook the same determination of & for six width-to-
height ratios. Table 1 gives the observed number of rolls and
the resuiting wavenumber compared with the theoretical
values, based on our paper [5]. In Fig. 2, curve (a) shows the
critical wavenumbers for transverse finite rolls (¥, = 0) and
curve (b) is relative to the onset of ‘3-dim. convection’. These
experiments have been performed two or three times for each
aspect ratio and always conducted to the same number of
rolls at the critical point, except for the case § = 1.94, where
two successive runs 90 and 91 rolls were observed, giving two
experimental values for this aspect ratio in Table 1.

4. CONCLUSION

We conclude from Fig. 2 that, when the width-to-height
ratio of a long fluid layer increases, the corresponding critical
wavenumber begins to decrease, reaches a minimum for § ~ 3
and then increases. It also appears that these experimental
data fit closely the curve corresponding to 3-dim. per-
turbations and disagree with the finite rolls approximation,
providing a supplementary, but indirect proof of the 3-dim.
character of the flow : there should exist a non-zero y-velocity

component in the Rayleigh—Bénard convective motion even
near the threshold of convection.

We have also proved that, contrary to the recent results of
Frick and Clever [4], the difference between the initial values
of the finite rolls assumption and the critical values of the 3-
dim. theory is not negligible and can be experimentally
measured.
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